

EQUIPMENT DATA SHEET

HED

<u>Electronic Dynamometer 05 – 10 - 20 KN</u>

Purpose: Perform tensile, compression, flexure, bend, shear, and cyclic tests.

Standard dynamometer is supplied complete with one load cell. All grips or specific tools to perform the tests are supplied as extra.

Machine is controlled by a PC through a program that controls the force and displacement systems and contains the database where are store all dates and test procedures necessary to perform all types of tensile and compression tests.

This program also manages the communications with dynamometer to guarantee that data exchange is made quick and without deterioration of dates.

The database contains the standards and test methods, calculations, variables, and units, needed for each test method and the performed tests. This feature allows editing and reanalyzing of the stored tests and eventually addition of new calculations, or new test specimens.

Other feature is the possibility to create several operators that depending on the permission level, allow different possibilities, such as:

- <u>User</u> Just have the permission to perform the tests according test methods created by other operator with high permission level;
- <u>Admin</u> This permission level allows create new tests methods, manage the calculations and other features;
- <u>Super Admin</u> Is the highest level of permission that beyond the possibilities of lower-level users has the permission to access to the calibration procedure.

During each test, and in real time, a graphic is plotted showing the development of the test and allowing the intervention of the operator to mark some points or stop the test. Tests can be configured to stop manually or automatically.

HILAB - Test Equipments & Consulting

In end of each test the system generates a test report that is stored in database and, if connected to a printer, can be printed.

The system is prepared to be connected to the internet to remote assistance. We recommend this connection that, at your request and authorization, will allow our remote support to solve any question or eventually to help with the creation of a new test method.

Dynamometers fulfil all relevant international safety standards. An additional safety guard is available at request.

Main machine features

- Overload security system to avoid load cell damage;
- Security system to prevent over-travel;
- Alignment system based in precision ball screws;
- Crosshead control assured by AC servo drive;
- The possibility to install load cells with different load capacity, according to test requirements;
- Different type of clamps, manual or pneumatic can be used;
- Extensometer can be installed at request.

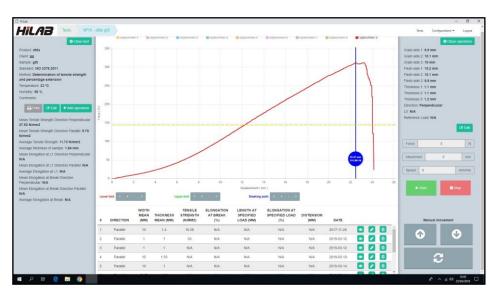
Main Software features

- Intuitive and user-friendly software;
- Dynamometer runs under operative system "Windows";
- Testing program covers all type of tests (tensile, compression, peel, shear, tear, cyclic, etc.);
- Automatic storage of all test data, that can be exported, edited, printed, etc;
- Test report is generated automatically and can be printed or sent by email;
- Automatic recognition and calibration of load cells;
- Test screen contains real time graphic and many informations about test procedure as force, displacement, test speed, load cell capacity, etc;
- Each test can be configurated according to several standards or internal test methods, allowing create very complex test procedures;
- Test stop can be configurated as manual or automatic.

Our dynamometer is the only one on the market that allows to be upgraded from 5 KN to 10 or even to 20 KN, without any mechanical.

HILAB - Test Equipments & Consulting

SPECIFICATIONS						
Characteristics	Unit	HED05	HED10	HED20	Standard Supply	
Maximum Force capacity	(KN)	05	10	20		
Force accuracy	%	±1	± 1	± 1	 One load cell; One PC w/ monit 	
Test speed	(mm/min)	0,1 to 800	0,1 to 800	0,1 to 800		
Test speed accuracy	%	± 1	± 1	± 1	As extra accessories could	
Return speed Useful test width Max. useful displacement	(mm/min)	500 400	500 400	500 400 1000 (*)	 be supplied: - other load cell capacities - Extensometer; - mechanical grips; 	
	(mm)					
	(mm)	1000 (*)	1000 (*)			
Voltage	(VAC)	230 ± 10	230 ± 10	230 ± 10	 pneumatic grips; a wide range tools to 	
Power	(W)	850	850	850	perform all kind of tests.	
Compressed air	(bar)	(**)	(**)	(**)		
Dimensions (W x D x H)	(mm)	680x620x1800				
Net Weight	(Кg)	145				
Notos	1					


Notes:

The machine should be installed on a strong, rigid, and leveled bench.

(*) – Depending on initial grips distance

(**) - only in case of pneumatic grips

Some test and program windows

During test, a graphic is generated showing in real time the behaviour of the sample.

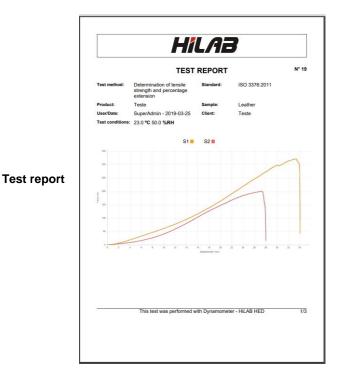
All dates of the test are showing in the test screen.

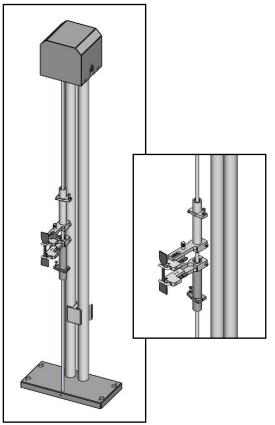
HILAB - Test Equipments & Consulting

The graphic can show all plotted lines to allow compare test results between several samples or one by one to analyse individually.

st List								O Add
ww.	* ectries							Search
IST:	PRODUCT :	CLIENT :	SAMPLE :	STANDARD :	METHOD :	OPERATOR =	DATE .	
	те	TE	TE	190 3377-2:2016	Determination of tear load - Double edge tear	SuperAdmin	2018-01-15	
	tes	tes	tes	ISO 3377-2.2016	Determination of tear load - Double edge tear	SuperAdmin	2018-01-15	
	teste	teste	teste	190 11644 2009	Test for adhesion of finish	SuperAdmin	2018-01-15	
	dīds	99	g51	190 3376 2011	Determination of tensile strength and percentage extension	SuperAdmin	2017-11-26	
	Leather	teste	Sport shoe	ISO 11644.2009	Test for adhesion of finish	FPOCIA	2017-10-17	
	Leather	teste	normal	150 3376 2011	Determination of tensile strength and percentage extension	FPOCIA	2017-10-07	
	Leather	test	normal	190 3376 2011	Determination of tensile strength and percentage extension	FPOCIA	2017-10-07	
	Leather	lab	normal	190 3376:2011	Determination of tensile strength and percentage extension	FPCCIA	2017-10-07	28
	A	A	A	ISO 11644.2009	Test for adhesion of finish	SuperAdmin	2017-04-13	
	Sandal	FPCCIA	Sandal	SATRA TM118.1992	Strength of sandal toes posts	SuperAdmin	2017-04-13	28
	Eyelet	FPCCIA	Sport shoe	SATRA TM118 1992	Strength of sandal toes posts	SuperAdmin	2017-04-13	0 0
	Shoe	FPCCIA	Sandal	ISO 22650 2002	Test methods for whole shoe - Heel attachment	SuperAdmin	2017-04-13	
	Leather	FPODIA	Camel lady shoe, Nº 36	ISO 17697-2016	Steam Strength - Method A	FPODIA	2017-04-13	

All tests made are stored in a data base which allow later edition and print any test report.


With edition facility is possible reanalyse each test, clean it, add new tests in same type of sample, etc.


Name Determination of tensits isturght and perioritage extension	Cult S KN +	Graphic Options	Calculation data points * 100% Middle 80% Middle 2/4	Status Active	•
ARIABLES RULES SPECIMEN CALCULATIONS TEST CALCULATION	IS				
NAME		DATE			
Mean Tenske Strength		2017-01-31 11:17			
Average Tensile Strength		2017-01-31 11:17			
Average thickness of sample		2017-01-31 11:17			
Mean Elongation at L1		2017-01-35 11 17			
Average Eliongation at L1		2017-01-31 11:17			
Mean Elongation at Break		2017-01-31 11 17			
Average Elongation at Break		2017-01-31 11:17			
					til lest calculation

Calculations and Variables

HILAB - Test Equipments & Consulting


An Extensometer can be installed to assure higher accuracy in distension measurements. Normally required for polymeric materials or other, according to standards requirements. In case of use of extensometer, the test method is configurated to

assume the measurements of distension, made by extensometer.

HILAB - Test Equipments & Consulting

Some extra tools that can be used in the dynamometer. Many other are available

Due continuous technical developments, we reserve the right to introduce product changes, without previous notice.

This equipment fulfils CE safety standards. A conformity certificate is issued	This equipment fulfils the standards EN 10002-2; ISO 7500-1. Certificate of conformity with test standards and a Workshop certificate are issued		
The origin of this equipment is PORTUGAL.	Operation manual is delivered with equipment		
A certificate will be is issued at dispatch time			

HILAB – Test Equipments & Consulting Rua 16 de Maio, 308